Linear Off-Policy Actor-Critic

نویسندگان

  • Thomas Degris
  • Martha White
  • Richard S. Sutton
چکیده

This paper presents the first actor-critic algorithm for o↵-policy reinforcement learning. Our algorithm is online and incremental, and its per-time-step complexity scales linearly with the number of learned weights. Previous work on actor-critic algorithms is limited to the on-policy setting and does not take advantage of the recent advances in o↵policy gradient temporal-di↵erence learning. O↵-policy techniques, such as Greedy-GQ, enable a target policy to be learned while following and obtaining data from another (behavior) policy. For many problems, however, actor-critic methods are more practical than action value methods (like Greedy-GQ) because they explicitly represent the policy; consequently, the policy can be stochastic and utilize a large action space. In this paper, we illustrate how to practically combine the generality and learning potential of o↵policy learning with the flexibility in action selection given by actor-critic methods. We derive an incremental, linear time and space complexity algorithm that includes eligibility traces, prove convergence under assumptions similar to previous o↵-policy algorithms, and empirically show better or comparable performance to existing algorithms on standard reinforcement-learning benchmark problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Off-Policy Actor-Critic

This paper presents the first actor-critic algorithm for off-policy reinforcement learning. Our algorithm is online and incremental, and its per-time-step complexity scales linearly with the number of learned weights. Previous work on actor-critic algorithms is limited to the on-policy setting and does not take advantage of the recent advances in offpolicy gradient temporal-difference learning....

متن کامل

Convergent Actor-Critic Algorithms Under Off-Policy Training and Function Approximation

We present the first class of policy-gradient algorithms that work with both state-value and policy function-approximation, and are guaranteed to converge under off-policy training. Our solution targets problems in reinforcement learning where the action representation adds to thecurse-of-dimensionality; that is, with continuous or large action sets, thus making it infeasible to estimate state-...

متن کامل

Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor

Model-free deep reinforcement learning (RL) algorithms have been demonstrated on a range of challenging decision making and control tasks. However, these methods typically suffer from two major challenges: very high sample complexity and brittle convergence properties, which necessitate meticulous hyperparameter tuning. Both of these challenges severely limit the applicability of such methods t...

متن کامل

The Reactor: A Sample-Efficient Actor-Critic Architecture

In this work we present a new reinforcement learning agent, called Reactor (for Retraceactor), based on an off-policy multi-step return actor-critic architecture. The agent uses a deep recurrent neural network for function approximation. The network outputs a target policy π (the actor), an action-value Q-function (the critic) evaluating the current policy π, and an estimated behavioural policy...

متن کامل

A Batch, Off-Policy, Actor-Critic Algorithm for Optimizing the Average Reward

We develop an off-policy actor–critic algorithm for learning an optimal policy from a training set composed of data from multiple individuals. This algorithm is developed with a view toward its use in mobile health.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012